If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2w^2+20w-36=0
a = 2; b = 20; c = -36;
Δ = b2-4ac
Δ = 202-4·2·(-36)
Δ = 688
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{688}=\sqrt{16*43}=\sqrt{16}*\sqrt{43}=4\sqrt{43}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-4\sqrt{43}}{2*2}=\frac{-20-4\sqrt{43}}{4} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+4\sqrt{43}}{2*2}=\frac{-20+4\sqrt{43}}{4} $
| y+35+2y-10=180 | | 125/6x–14x+1/6x= | | -9y+1=13–11y | | 3^{6x−4}=46 | | 4x+20=6x+14 | | 1/9x+1/9x+4=12 | | -4.9t^2+9t=15 | | 5x²-500=0* | | 2,500×y=350,000 | | -5(x+3)+10=-25 | | -4.9t^2-4.25t-100=0 | | 2,500×x=350,000 | | 2x=6x, | | 27+13x=180 | | 2,500⋅y=350,000 | | b-7/13=231/247 | | F(x)=20+50x | | a-49/10=211/20 | | 32+7x+6-5=180 | | 8(2x-2)+7=119 | | p+15=36 | | x-15=-13.3 | | 4x-5=2(2x-2)-1 | | (-14-3r)/2=-13 | | F(1.5)=20+50x | | 8y+17=y | | 6x-15=3(2x+8) | | (-5p-12)/2=-16 | | 8x+5=26+8x | | (9x+10)-(2x+4)=7x+14 | | 4b/3=8 | | (2x+11)/3=3 |